metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mustafa Odabaşoğlu^a* and Orhan Büyükgüngör^b

^aDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ^bDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.024 wR factor = 0.061 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[diaquabarium(II)]-di-μ-2-formylbenzoato]

In the title compound, $[Ba(C_8H_5O_3)_2(H_2O)_2]_n$, the Ba^{II} atom (site symmetry 2) is eight-coordinated by two bidentate 2formylbenzoate ligands, two monodentate formylbenzoate ligands and two terminal water molecules. The bridging ligands result in a one-dimensional coordination polymer. A network of $O-H\cdots O$ hydrogen bonds links the polymeric chains.

Comment

The title compound, (I), is a new coordination polymer containing barium cations, 2-formylbenzoate anions and water molecules. The coordination environment around the central barium ion is shown in Fig. 1. The Ba atom lies on a twofold rotation axis and is eight-coordinated by two bidentate carboxylate groups, two monodentate carboxylate O atoms and two water molecules (Table 1). The formyl group O atom does not coordinate to barium. The bond angles around the Ba atom are in the range 45.59 (6)–165.77 (7) $^{\circ}$. The crystalpacking diagram of this complex reveals a one-dimensional coordination polymer, propagating along [001], as shown in Fig. 2. The carboxylate O1 atom bridges two adjacent Ba atoms, with a Ba-O1-Ba angle of 105.55 (7)°. The Ba \cdots Ba separation in the chain of 4.4336 (3) Å is comparable to values reported for barium-2,2'-dithiodibenzoate (Murugavel et al., 2001), barium-2-aminobenzoate (Murugavel et al., 2000) and catena-poly[tetraaquabis(thiosalicylate)barium(II)] (Lee et al., 2003).

The coordinated water molecule makes two interchain $O-H\cdots O$ hydrogen bonds (Table 2). One of the acceptor O atoms is part of the formyl group, the other is part of a carboxylate group.

© 2006 International Union of Crystallography All rights reserved Received 9 January 2006 Accepted 26 January 2006

Figure 1

Fragment of (I), showing the environment of the Ba cation (50% displacement ellipsoids; arbitrary spheres for the H atoms). [Symmetry codes: (i) 1 - x, y, $\frac{3}{2} - z$; (ii) x, 1 - y, $\frac{1}{2} + z$; (iii) 1 - x, 1 - y, 1 - z.]

The extended polymeric chains in (I), propagating along [001].

Experimental

 $BaCO_3$ (0.985 g, 5 mmol) was added slowly to an ethanol-water (1:1 ν/ν) solution (10 ml) of 2-formylbenzoic acid (1.50 g, 10 mmol) with continuous stirring. The reaction mixture was heated in a water bath

for 0.5 h. Colorless crystals of (I) suitable for X-ray analysis were obtained after a week at room temperature (yield 80%; decomposition point > 523 K).

Crystal data

 $\begin{bmatrix} Ba(C_8H_5O_3)_2(H_2O)_2 \end{bmatrix}$ $M_r = 471.61$ Monoclinic, C2/c a = 18.4346 (12) Å b = 11.6009 (7) Å c = 8.3914 (5) Å $\beta = 95.364$ (5)° V = 1786.71 (19) Å³ Z = 4

Data collection

Stoe IPDS-2 diffractometer ω scans Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) $T_{min} = 0.548$, $T_{max} = 0.704$ 12690 measured reflections 1768 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.061$ S = 1.031768 reflections 122 parameters H atoms treated by a mixture of independent and constrained refinement $D_x = 1.753 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 12690 reflections $\theta = 2.1-28.0^{\circ}$ $\mu = 2.26 \text{ mm}^{-1}$ T = 296 (2) KPrism, colorless $0.32 \times 0.25 \times 0.19 \text{ mm}$

1703 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.086$ $\theta_{\text{max}} = 26.0^{\circ}$ $h = -22 \rightarrow 22$ $k = -14 \rightarrow 14$ $l = -10 \rightarrow 10$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0326P)^2 \\ &+ 2.7955P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.85 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.72 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Selected	bond	lengths	(Å).	

Ba1-O1 ⁱ	2.6599 (19)	Ba1-O2	2.757 (2)
Ba1-O4	2.714 (3)	Ba1-O1	2.905 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4A\cdots O3^{ii}$ $O4-H4B\cdots O2^{iii}$	0.791 (17) 0.810 (18)	1.963 (18) 1.971 (18)	2.754 (3) 2.779 (4)	178 (4) 175 (3)

Symmetry codes: (ii) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (iii) -x + 1, -y + 1, -z + 2.

All H atoms except those bonded to water O atoms were placed in calculated positions and refined as riding, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(carrier)$. The H atoms of the aqua ligands were located in a difference map and refined with distance restraints of O-H = 0.82 (2) Å and $H \cdots H = 1.30$ (2) Å.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565. Farrugia, L. J. (1999). J. Appl. Cryst. **32**, 837–838.

- Lee, B.-H., Kim, C.-H. & Lee, S.-G. (2003). Acta Cryst. C59, m196–m198.
 Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870–6878.
- Murugavel, R., Karambelkar, V. V., Anantharaman, G. & Walawalkar, M. G. (2000). *Inorg. Chem.* **39**, 1381–1390.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.